当前位置:懂科普 >

综合知识

> tra与内积的关系

tra与内积的关系

tra与内积的关系

tra与内积的关系是等于,原因是两个向量相乘,a中第i个元素乘以b中第i个元素的积,全部在形成的矩阵对角线上。点积在数学中,又称数量积,是指接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。应用学科是线性代数。点积有两种定义方式:代数方式和几何方式。通过在欧氏空间中引入笛卡尔坐标系,向量之间的点积既可以由向量坐标的代数运算得出,也可以通过引入两个向量的长度和角度等几何概念来求解。

小编还为您整理了以下内容,可能对您也有帮助:

矩阵的迹与内积的关系

设α(a,b,c)T,β(a1,b1,c1)T,内积一下,会发现aa1+bb1+cc1=3正好等于迹。

扩展资料

在线性代数中,一个n×n矩阵A的主对角线(从左上方至右下方的.对角线)上各个元素的总和被称为矩阵A的迹(或迹数),一般记作tr(A)。点积在数学中,又称数量积,是指接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。

向量内积分配律证明

向量A*B的意义是向量A的数量乘以向量B在向量A的方向上的投影的数量的大小,这样明确其数学意义我们就可以证明了。将向量A 和向量 B+C 的始点移动到同一点,过向量B的终点做垂直于向量A的平面1,则平面1与向量A的始点之间的距离就是向量B在向量A的方向上的投影的数量,同理在向量C的终点做垂直向量A的平面2,那么在平面1和平面2之间的距离就是向量C在向量A的方向上的投影的数量,而且在平面2和向量A的始点之间的距离就是向量 B+C 在向量A的方向上的投影的数量,这样由这三个投影之间的简单关系就知道 A*(B+C)=A*B+A*C追问那个。。没看懂啊,平面1和平面2是什么东西?如果有条件的话能画个图讲解吗?有加分

追答我不会作图啊,不好意思!你看看下面的内容,看会了不?实际上只要会使用就行。不需要证明。

三维向量外积(即矢积、叉积)可以用几何方法证明;也可以借用外积的反对称性、内积的分配律和混合积性质,以代数方法证明。

下面把向量外积定义为:

a × b = |a|·|b|·Sin.

分配律的几何证明方法很繁琐,大意是用作图的方法验证。有兴趣的话请自己参阅参考文献中的证明。

下面给出代数方法。我们假定已经知道了:

1)外积的反对称性:

a × b = - b × a.

这由外积的定义是显然的。

2)内积(即数积、点积)的分配律:

a·(b + c) = a·b + a·c,

(a + b)·c = a·c + b·c.

这由内积的定义a·b = |a|·|b|·Cos,用投影的方法不难得到证明。

3)混合积的性质:

定义(a×b)·c为矢量a, b, c的混合积,容易证明:

i) (a×b)·c的绝对值正是以a, b, c为三条邻棱的平行六面体的体积,其正负号由a, b, c的定向决定(右手系为正,左手系为负)。

从而就推出:

ii) (a×b)·c = a·(b×c)

所以我们可以记a, b, c的混合积为(a, b, c).

由i)还可以推出:

iii) (a, b, c) = (b, c, a) = (c, a, b)

我们还有下面的一条显然的结论:

iv) 若一个矢量a同时垂直于三个不共面矢a1, a2, a3,则a必为零矢量。

下面我们就用上面的1)2)3)来证明外积的分配律。

设r为空间任意矢量,在r·(a×(b + c))里,交替两次利用3)的ii)、iii)和数积分配律2),就有

r·(a×(b + c))

= (r×a)·(b + c)

= (r×a)·b + (r×a)·c

= r·(a×b) + r·(a×c)

= r·(a×b + a×c)

移项,再利用数积分配律,得

r·(a×(b + c) - (a×b + a×c)) = 0

这说明矢量a×(b + c) - (a×b + a×c)垂直于任意一个矢量。按3)的iv),这个矢量必为零矢量,即

a×(b + c) - (a×b + a×c) = 0

所以有

a×(b + c) = a×b + a×c.

证毕。

参考资料::《空间解析几何引论》(第二版),南开大学《空间解析几何引论》编写组

参考资料:知道

内积是什么?

内积是什么:“内积”即为“点积”,我们通常还称他为数量积。

出处:欧几里得空间的标准内积。

数学解释:两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为a·b=a1b1+a2b2+……+anbn。

通俗理解:使用矩阵乘法并把(纵列)向量当作n×1 矩阵,点积还可以写为a·b=a^T*b,这里的a^T指示矩阵a的转置。

属于二元运算类型,点积的三个值为u、v、u,v夹角的余弦。

向量之间乘法与向量内积的关系

向量的内积也叫数量积是向量模长的积再乘以夹角的余弦值,结果为数量,符号用点表示;外积也叫向量积,是模长的积乘以夹角的正弦值,结果仍为向量,方向可以用右手定则判断,符号用X表示。

内积的性质

1、<f,g>=<g,f>

2、<af+bg,h>=a<f,h>+b<g,h>(其中a、b为常数,f、g、h为函数)

3、如果<f,g>在[a,b]上=0,我们就称f与g在[a,b]上正交。

函数的内积用于描述两个函数之间的关系。它在傅里叶级数中起到了奠基性的作用 [1]  ,在其他方面也有用途。

现规定两函数f(x)与g(x)与区间[a,b],且两函数在该区间上可积且平方可积。则积分

记作函数的内积。函数的内积常记作<f(x),g(x)>。

内积的定义:

从代数的角度来说,内积是两个向量之间的一种运算,其结果是一个实数。

内积的几何解释:

内积定义了向量空间里的角度

坐标的内积公式

坐标的内积公式如下:

若向量a=(a1,a2),b=(b1,b2),则:a·b=(a1,a2)·(b1,b2)=a1b1+a2b2。

公式,在数学、物理学、化学、生物学等自然科学中用数学符号表示几个量之间关系的式子。具有普遍性,适合于同类关系的所有问题。

什么是矩阵内积

矩阵的内积参照向量的内积的定义是:两个向量对应分量乘积之和。

比如: α=(1,2,3), β=(4,5,6)

则 α, β的内积等于 1*4 +2*5 + 3*6 = 32

α与α 的内积 = 1*1+2*2+3*3 = 14

设Ann=[aij](其中1<=i,j<=n),Bnn=[bij](其中1<=i,j<=n);

则矩阵A和B的内积为C1n=[∑(i=1到n求和)aij*bij](其中1<=i,j<=n)。

此时内积C1n为1行,n列的矩阵。

举例子矩阵A和B分别为:

[1 2 3]

[4 5 6]

[7 8 9]

[9 8 7]

[6 5 4]

[3 2 1]

则内积为:

[1*9+4*6+7*3 2*8+5*5+8*2 3*7+6*4+1*9] = [54 57 54]

扩展资料

在线性代数中,三角矩阵是方形矩阵的一种,因其非零系数的排列呈三角形状而得名。三角矩阵分上三角矩阵和下三角矩阵两种。

设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。

若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。

若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。

设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。

复数向量的内积

复数向量的内积公式是前一个向量各分量与后一个向量中元素的共轭对应相乘然后相加,即(x,y,z)*(a,b,c)=x(a共轭)+y(b共轭)+z(c共轭)。

信号分析:

信号分析和其他领域使用复数可以方便的表示周期信号。模值|z|表示信号的幅度,辐角arg(z)表示给定频率的正弦波的相位。

利用傅立叶变换可将实信号表示成一系列周期函数的和。这些周期函数通常用形式如下的复函数的实部表示:其中,ω对应角频率,复数z包含了幅度和相位的信息。

电路分析中,引入电容、电感与频率有关的虚部可以方便的将电压、电流的关系用简单的线性方程表示并求解。

内积和转置的关系

内积和转置的关系:如果对内积的结果(数)进行转置,可以看成一阶矩阵转置,当然是他自己。如果内积定义成矩阵形式,如 a'*a, 它的转置是(a'*a)' = a'*a,仍是它自身。

向量的内积

设α,β是n维列向量

它们的内积

(α,β) = α^T β = β^T α

定义

只对二维和三维空间有效。这个运算可以简单地理解为:在点积运算中,第一个向量投影到第二个向量上(这里,向量的顺序是不重要的,点积运算是可交换的),然后通过除以它们的标量长度来“标准化”。这样,这个分数一定是小于等于1的,可以简单地转化成一个角度值。

两向量垂直的公式是什么?

x1*x2+y1*y2=0和|A|*|B|*cos(A与B的夹角)=0。

一、

①几何角度关系:向量A=(x1,y1)与向量B=(x2,y2)垂直则有x1*x2+y1*y2=0

②坐标角度关系:A与B的内积=|A|*|B|*cos(A与B的夹角)=0

二、

证明:

①几何角度:

向量A (x1,y1),长度L1 =√(x1²+y1²)

向量B (x2,y2),长度L2 =√(x2²+y2²)

(x1,y1)到(x2,y2)的距离:D=√[(x1 - x2)² + (y1 - y2)²]

两个向量垂直,根据勾股定理:L1² + L2² = D²

∴(x1²+y1²) + (x2²+y2²) = (x1 - x2)² + (y1 - y2)²

∴x1² + y1² + x2² + y2² = x1² -2x1x2 + x2² + y1² - 2y1y2 + y2²

∴0 = -2x1x2 - 2y1y2

∴x1x2 + y1y2 = 0

②扩展到三维角度:x1x2 + y1y2 + z1z2 = 0,那么向量(x1,y1,z1)和(x2,y2,z2)垂直

综述,对任意维度的两个向量L1,L2垂直的充分必要条件是:L1×L2=0成立。

几何向量的概念

在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。

不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。

标签: 内积 tra
  • 文章版权属于文章作者所有,转载请注明 https://dongkepu.com/zonghezhishi/z7mpkg.html