当前位置:懂科普 >

综合知识

> 铁矿石和纯碱哪个稳定

铁矿石和纯碱哪个稳定

铁矿石和纯碱哪个稳定

纯碱稳定,因为铁矿石在某些条件下容易受到氧化等化学反应而导致变质。但是需要注意的是,纯碱对酸和硫酸盐有着较强的反应性,会释放出二氧化碳等挥发性气体,需要储存和处理得当。

纯碱稳定,因为铁矿石在某些条件下容易受到氧化等化学反应而导致变质。但是需要注意的是,纯碱对酸和硫酸盐有着较强的反应性,会释放出二氧化碳等挥发性气体,需要储存和处理得当。

纯碱稳定,因为铁矿石在某些条件下容易受到氧化等化学反应而导致变质。但是需要注意的是,纯碱对酸和硫酸盐有着较强的反应性,会释放出二氧化碳等挥发性气体,需要储存和处理得当。

小编还为您整理了以下内容,可能对您也有帮助:

炼铁时铁矿石是如何选择的?

我是炼铁的,只知道我们钢铁厂怎么选择铁矿石。而前一步开采选矿工艺就不是很了解了。

铁矿石的要就是品位高,脉石成分要好,不能太酸稍微有点碱好,有害元素少(例如:S P Sn Zn 等),粒度稳定,强度好,还原性要强,化学成分要稳定。

天然块矿sishens和粉矿fines都不用加工,烧结矿是用筛分、焙烧,球团矿pellets是人工制成的复杂混合矿。

在“铁矿石、氮气、硝酸钾、钛合金、纯碱”中选择合适的物质填空:(1)充入食品包装袋中防腐的是 ①

①   氮气    ;② 铁矿石    ;③ 钛合金    ;④   纯碱  ;⑤ 钾    ;

:(1)氮气性质稳定,可用作保护气;故答案为:氮气,

(2)铁矿石的主要成分是铁的化合物,是炼铁原料;故答案为:铁矿石;

(3)钛合金与人体骨骼具有很好的相容性,可用于制造人造骨,故答案为:钛合金.

(4)纯碱的化学名称是碳酸钠,广泛用于玻璃、造纸、纺织和洗涤剂的生产;故答案为:纯碱

(5)钾含钾、氮元素,属于复合肥料,故答案为:钾

纯碱为什么和铁矿石

纯碱与铁矿石。纯碱和铁矿石的关系是原料(能源)与产品的关系,动力煤的价格高低会影响到纯碱成本,所以动力煤价格变化可以作为预测纯碱价格波动的领先指标

纯碱跟铁矿石有什么关系

共存关系。

1、纯碱又叫碳酸钠,是一种无机化合物,但分类属于盐,不属于碱。它是一种重要的无机化工原料,主要用于平板玻璃、玻璃制品和陶瓷釉的生产。

2、铁矿石是钢铁生产企业的重要原材料,天然矿石经过破碎、磨碎、磁选、浮选、重选等程序逐渐选出铁。铁矿石是含有铁单质或铁化合物能够经济利用的矿物集合体。

怎么区分铁矿石的好坏?

磁铁矿  主要成分为Fe3O4,即四氧化三铁,每个Fe3O4分子中有两个+3价的铁原子和1一个+2价的铁原子,氧原子现-2价,其中Fe的质量分数约为72.3597945571%。等轴晶系。单晶体常呈八面体,较少呈菱形十二面体。在菱形十二面体面上,长对角线方向常现条纹。集合体多呈致密块状和粒状。颜色为铁黑色、条痕为黑色,半金属光泽,不透明。硬度5.5~6.5。比重4.9~5.2。具强磁性。 磁铁矿中常有相当数量的Ti4+以类质同象代替Fe3+,还伴随有Mg2+和V3+等相应地代替Fe2+和Fe3+,因而形成一些矿物亚种,即:    (1)钛磁铁矿 Fe2+(2+x)Fe3+(2-2x)TixO4(0<x<1),含TiO212%~16%。常温下,钛从其中分离成板状和柱状的钛铁矿及布纹状的钛铁晶石。   (2)钒磁铁矿 FeV2O4或Fe2+(Fe3+V)O4,含V2O5有时高达68.41%~72.04%。   (3)钒钛磁铁矿 为成分更为复杂的上述两种矿物的固溶体产物。   (4)铬磁铁矿 含Cr2O3可达百分之几。   (5)镁磁铁矿 含MgO可达6.01%。   磁铁矿是岩浆成因铁矿床、接触交代-热液铁矿床、沉积变质铁矿床,以及一系列与火山作用有关的铁矿床中铁矿石的主要矿物。此外,也常见于砂矿床中。   磁铁矿氧化后可变成赤铁矿(假象赤铁矿及褐铁矿),但仍能保持其原来的晶形。 赤铁矿   赤铁矿中主要成分为Fe2O3,即氧化铁。自然界中Fe2O3的同质多象变种已知有两种,即α-Fe2O3和γ-Fe2O3,其中Fe的质量分数约为69.9433034300%。前者在自然条件下稳定,称为赤铁矿;后者在自然条件下不如α-Fe2O3稳定,处于亚稳定状态,称之为磁赤铁矿。 常含类质同象混入物Ti、Al、Mn、Fe2+、Ca、Mg及少量Ga和Co。三方晶系,完好晶体少见。结晶赤铁矿为钢灰色,隐晶质;土状赤铁矿呈红色。条痕为樱桃红色或鲜猪肝色。金属至半金属光泽。有时光泽暗淡。硬度5~6。比重5~5.3。   赤铁矿的集合体有各种形态,形成一些矿物亚种,即:   (1)镜铁矿 为具金属光泽的玫瑰花状或片状赤铁矿的集合体。   (2)云母赤铁矿 具金属光泽的晶质细鳞状赤铁矿。   (3)鲕状或肾状赤铁矿 形态呈鲕状或肾状的赤铁矿。   赤铁矿是自然界中分布很广的铁矿物之一,可形成于各种地质作用,但以热液作用、沉积作用和区域变质作用为主。在氧化带里,赤铁矿可由褐铁矿或纤铁矿、针铁矿经脱水作用形成。但也可以变成针铁矿和水赤铁矿等。在还原条件下,赤铁矿可转变为磁铁矿,称假象磁铁矿。 磁赤铁矿   γ-Fe2O3,其化学组成中常含有Mg、Ti和Mn等混入物。等轴晶系,五角三四面体晶类,多呈粒状集合体,致密块状,常具磁铁矿假象。颜色及条痕均为褐色,硬度5,比重4.88,强磁性。   磁赤铁矿主要是磁铁矿在氧化条件下经次生变化作用形成。磁铁矿中的Fe2+完全为Fe3+所代替(3Fe2+→2Fe3+),所以有1/3Fe2+所占据的八面体位置产生了空位。另外,磁赤铁矿可由纤铁矿失水而形成,亦有由铁的氧化物经有机作用而形成的。 褐铁矿   实际上并不是一个矿物种,而是针铁矿、纤铁矿、水针铁矿、水纤铁矿以及含水氧化硅、泥质等的混合物。化学成分变化大,含水量变化也大。 (1)针铁矿 α-FeO(OH),含Fe 62.9%。含不定量的吸附水者,称水针铁矿HFeO2·NH2O。斜方晶系,形态有针状、柱状、薄板状或鳞片状。通常呈豆状、肾状或钟乳状。切面具平行或放射纤维状构造。有时成致密块状、土状,也有呈鲕状。颜色红褐、暗褐至黑褐。经风化而成的粉末状、赭石状褐铁矿则呈黄褐色。针铁矿条痕为红褐色,硬度5~5.5,比重4~4.3。而褐铁矿条痕则一般为淡褐或黄褐色,硬度1~4,比重3.3~4。   (2)纤铁矿 γ-FeO(OH),含Fe 62.9%。含不定量的吸附水者,称水纤铁矿FeO(OH)·NH2O。斜方晶系。常见鳞片状或纤维状集合体。颜色暗红至黑红色。条痕为桔红色或砖红色。硬度4~5,比重4.01~4.1。 钛铁矿   主要成分为FeTiO3,即钛酸亚铁,其中Fe的质量分数约为36.8031410549%。三方晶系。菱面体晶类。常呈不规则粒状、鳞片状或厚板状。在950℃以上钛铁矿与赤铁矿形成完全类质同象。当温度降低时,即发生熔离,故钛铁矿中常含有细小鳞片状赤铁矿包体。钛铁矿颜色为铁黑色或钢灰色。条痕为钢灰色或黑色。含赤铁矿包体时呈褐色或带褐的红色条痕。金属-半金属光泽。不透明,无解理。硬度5~6.5,比重4~5。弱磁性。钛铁矿主要出现在超基性岩、基性岩、碱性岩、酸性岩及变质岩中。我国攀枝花钒钛磁铁矿床中,钛铁矿呈粒状或片状分布于钛磁铁矿等矿物颗粒之间,或沿钛磁铁矿裂开面成定向片晶。 菱铁矿   主要成分为FeCO3,即碳酸亚铁,其中Fe的质量分数约为49.0504689248%,常含Mg和Mn。三方晶系。常见菱面体,晶面常弯曲。其集合体成粗粒状至细粒状。亦有呈结核状、葡萄状、土状者。、浅褐(风化后为深褐色),玻璃光泽。硬度3.5~4.5,比重3.96左右,因Mg和Mn的含量不同而有所变化。 黄铁矿   主要成分为FeS2,即过硫化亚铁,其中Fe的质量分数约为46.5519684580%,黄铁矿因其浅黄铜的颜色和明亮的金属光泽,常被误认为是黄金,故又称为“愚人金”。晶体属等轴晶系的硫化物矿物。成分中通常含钴、镍和硒,具有NaCl型晶体结构。常有完好的晶形,呈立方体、八面体、五角十二面体及其聚形。立方体晶面上有与晶棱平行的条纹,各晶面上的条纹相互垂直。集合体呈致密块状、粒状或结核状。浅黄(铜黄)色,条痕绿黑色,强金属光泽,不透明,无解理,参差状断口。摩氏硬度较大,达6-6.5,小刀刻不动。比重4.9―5.2。在地表条件下易风化为褐铁矿。   黄铁矿是铁的二硫化物。一般将黄铁矿作为生产硫磺和硫酸的原料,而不是用作提炼铁的原料,因为提炼铁有更好的铁矿石,且炼制过程当中会产生大量SO2,造成空气污染。黄铁矿分布广泛,在很多矿石和岩石中包括煤中都可以见到它们的影子。一般为黄铜色立方体样子。黄铁矿风化后会变成褐铁矿或黄钾铁矾。 性质    铁元素(Ferrum)的原子序数为26,符号为Fe。在元素周期表上,铁是第四周期第八副族(ⅧB)的元素。它与钴和镍同属四周期ⅧB族。   在自然界中,铁元素有4种稳定同位素,其同位素丰度(%)如下(Hertz,1960):   54Fe—5.81,56Fe—91.64,57Fe—2.21,58Fe—0.34。   铁的原子量平均为55.847(当12C=12.000时)。   铁的原子半径,取12配位数时,为1.26×10-10m。铁的原子体积为7.1cm3/克原子,原子密度为7.86g/cm3。   铁原子的电子结构是3d64s2。   铁原子很容易失掉最外层的两个s电子而呈正二价离子(Fe2+)。如果再失掉次外层的1个d电子,则呈正三价离子(Fe3+)。铁元素的这种变价特征,导致铁在不同氧化还原反应中显示出不同的地球化学性质。   铁原子失去第一个电子的电离势(I1)为7.90eV,失去第二个电子的电离势(I2)为16.18eV,失去第三个电子的电离势(I3)为30.64eV。   铁的离子半径随配位数和离子电荷而变化。据Ahrens(1952)资料,取6配位数时,Fe2+的离子半径为0.074nm,Fe3+的离子半径为0.064nm。铁离子在含氧盐和卤化物等中构成离子化合物。   铁常与硫和砷等构成共价化合物。铁的共价半径为1.17×10-10m。其键性强度可用铁和硫、砷等的电负性差求得。铁的电负性,Fe2+为1.8,Fe3+为1.9(波林,1964)。   凡是原子半径与铁相近的元素,当晶体结构相同时,易与铁形成金属互化物,如铁和铂族形成的金属互化物粗铂矿(Pt,Fe)。凡是离子半径与铁相近的元素,当化学结构式相同时,易与铁发生类质同象替换,如硅酸盐中的铁橄榄石和镁橄榄石类质同象系列;碳酸盐中的菱铁矿和菱锰矿类质同象系列;以及钨酸盐中的钨铁矿和钨锰矿类质同象系列,等等。   离子电位(Φ)是一个重要的地球化学指标。Fe2+的离子电位为2.70,可在水溶液中呈自由离子(Fe2+)迁移。Fe3+的离子电位较高,为4.69,它易呈水解产物沉淀。因此,在还原条件下,有利于Fe2+呈自由离子迁移;在氧化条件下,则Fe2+易氧化为Fe3+而呈水解产物沉淀。与铁共沉淀的元素(同价的或异价的)共生组合,可用离子电位图来预测。   铁及其化合物的密度、熔点和沸点,以及它们在水中的溶解度或溶度积,是决定铁进行地球化学迁移的重要物理常数。   铁化合物的溶度积(18℃时),Fe(OH)3为1.1×10-36,Fe(OH)2为1.04×10-14,FeS为3.7×10-19,等等。   铁的熔化潜热为269.55J/g,蒸发潜热为6343J/g。 技术经济指标   铁矿石是指岩石(或矿物)中TFe含量达到最低工业品位要求者。 铁矿石分类   按照矿物组分、结构、构造和采、选、冶及工艺流程等特点,可将铁矿石分为自然类型和工业类型两大类。   1.自然类型   1)根据含铁矿物种类可分为:磁铁矿石、赤铁矿石、假象或半假象赤铁矿石、钒钛磁铁矿石、褐铁矿石、菱铁矿石以及由其中两种或两种以上含铁矿物组成的混合矿石。   2)按有害杂质(S、P、Cu、Pb、Zn、V、Ti、Co、Ni、Sn、F、As)含量的高低,可分为高硫铁矿石、低硫铁矿石、高磷铁矿石、低磷铁矿石等。   3)按结构、构造可分为浸染状矿石、网脉浸染状矿石、条纹状矿石、条带状矿石、致密块状矿石、角砾状矿石,以及鲕状、豆状、肾状、蜂窝状、粉状、土状矿石等。   4)按脉石矿物可分为石英型、闪石型、辉石型、斜长石型、绢云母绿泥石型、夕卡岩型、阳起石型、蛇纹石型、铁白云石型和碧玉型铁矿石等。   2.工业类型   1)工业上能利用的铁矿石,即表内铁矿石,包括炼钢用铁矿石、炼铁用铁矿石、需选铁矿石。   2)工业上暂不能利用的铁矿石,即表外铁矿石,矿石含铁量介于最低工业品位与边界品位之间。

生铁品位

一、铁矿石品位

铁矿石的品位即指铁矿石的含铁量,以TFe%表示。品位是评价铁矿石质量的主要指标。矿石有无开采价值,开采后能否直接入炉冶炼及其冶炼价值如何,均取决于矿石的含铁量。

铁矿石含铁量高有利于降低焦比和提高产量。根据生产经验,矿石品位提高1%,焦比降低2%,产量提高3%。因为随着矿石品位的提高,脉石数量减少,熔剂用量和渣量也相应减少,既节省热量消耗,又有利于炉况顺行。从矿山开采出来的矿石,含铁量一般在30%~60%之间。品位较高,经破碎筛分后可直接入炉冶炼的称为富矿。一般当实际含铁量大于理论含铁量的70%~90%时方可直接入炉。而品位较低,不能直接入炉的叫贫矿。贫矿必须经过选矿和造块后才能入炉冶炼。

二、脉石成分

铁矿石的脉石成分绝大多数为酸性的,SiO2含量较高。在现代高炉冶炼条件下,为了得到一定碱度的炉渣,就必须在炉料中配加一定数量的碱性熔剂(石灰石)与Si02作用造渣。铁矿石中Si02含量愈高,需加入的石灰石也愈多,生成的渣量也愈多,这样,将使焦比升高,产量下降。所以要求铁矿石中含Si02愈低愈好。

脉石中含碱性氧化物(Ca0、MgO)较多的矿石,冶炼时可少加或不加石灰石,对降低焦比有利,具有较高的冶炼价值。

三、有害杂质和有益元素的含量

1.有害杂质

矿石中的有害杂质是指那些对冶炼有妨碍或使矿石冶炼时不易获得优质产品的元素。主要有S、P、Pb、Zn、As、K、Na等。

(1)硫

硫在矿石中主要以硫化物状态存在。硫的危害主要表现在:

a.当钢中的含硫量超过一定量时,会使钢材具有热脆性。这是由于FeS和Fe结合成低熔点(985℃)合金,冷却时最后凝固成薄膜状,并分布于晶粒界面之间,当钢材被加热到1150~1200℃时,硫化物首先熔化,使钢材沿晶粒界面形成裂纹。

b.对铸造生铁,会降低铁水的流动性,阻止Fe3C分解,使铸件产生气孔、难于切削并降低其韧性。

c.硫会显著地降低钢材的焊接性,抗腐蚀性和耐磨性。

国家标准对生铁的含硫量有严格规定,炼钢生铁,最高允许含硫质量分数不能超过0.07%,铸造铁不超过0.06%。虽然高炉冶炼可以去除大部分硫,但需要高炉温、高炉渣碱度,对增铁节焦是不利的。因此矿石中的含硫质量分数必须小于0.3%。

(2)磷

磷也是钢材的有害成分。以Fe2P、Fe3P形态溶于铁水。因为磷化物是脆性物质,冷凝时聚集于钢的晶界周围,减弱晶粒间的结合力,使钢材在冷却时产生很大的脆性,从而造成钢的冷脆现象。由于磷在选矿和烧结过程中不易除去,在高炉冶炼中又几乎全部还原进入生铁。所以控制生铁含磷的惟一途径就是控制原料的含磷量。

(3)铅和锌

铅和锌常以方铅矿(PbS)和闪锌矿(ZnS)的形式存在于矿石中。

在高炉内铅是易还原元素,但铅又不溶解于铁水,其密度大于铁水,所以还原出来的铅沉积于炉缸铁水层以下,渗入砖缝破坏炉底砌砖,甚至使炉底砌砖浮起。铅又极易挥发,在高炉上部被氧化成PbO,粘附于炉墙上,易引起结瘤。一般要求矿石中的含铅质量分数低于0.1%。

高炉冶炼中锌全部被还原,其沸点低(905℃),不熔于铁水。但很容易挥发,在炉内又被氧化成ZnO,部分ZnO沉积在炉身上部炉墙上,形成炉瘤,部分渗入炉衬的孔隙和砖缝中,引起炉衬膨胀而破坏炉衬。矿石中的含锌质量分数应小于0.1%。

(4)砷

砷在矿石中含量较少。与磷相似,在高炉冶炼过程中全部被还原进入生铁,钢中含砷也会使钢材产生“冷脆”现象,并降低钢材焊接性能。要求矿石中的含砷质量分数小于0.07%。

(5)碱金属

碱金属主要指钾和钠。一般以硅酸盐形式存在于矿石中。冶炼过程中,在高炉下部高温区被直接还原生成大量碱蒸气,随煤气上升到低温区又被氧化成碳酸盐沉积在炉料和炉墙上,部分随炉料下降,从而反复循环积累。其危害主要为:与炉衬作用生成钾霞石(K2O·A12O3·2SiO2),体积膨胀40%而损坏炉衬;与炉衬作用生成低熔点化合物,粘结在炉墙上,易导致结瘤;与焦炭中的碳作用生成插入式化合物(CK8、CNa8)体积膨胀很大,破坏焦炭高温强度,从而影响高炉下部料柱透气性。因此要矿石中碱金属的含量。

(6)铜

铜在钢材中具有两重性,铜易还原并进入生铁。当钢中含铜质量分数小于0.3%时能改善钢材抗腐蚀性。当超过0.3%时又会降低钢材的焊接性,并引起钢的“热脆”现象,使轧制时产生裂纹。一般铁矿石允许含铜质量分数不超过0.2%。

2.有益元素

矿石中有益元素主要指对钢铁性能有改善作用或可提取的元素。如锰(Mn)、铬(Cr)、钴(Co)、镍(Ni)、钒(V)、钛(Ti)等。当这些元素达到一定含量时,可显著改善钢的可加工性,强度和耐磨、耐热、耐腐蚀等性能。同时这些元素的经济价值很大,当矿石中这些元素含量达到一定数量时,可视为复合矿石,加以综合利用。

四、铁矿石的还原性

铁矿石的还原性是指铁矿石被还原性气体C0或H2还原的难易程度。它是一项评价铁矿石质量的重要指标。铁矿石的还原性好,有利于降低焦比。

影响铁矿石还原的因素主要有矿物组成、矿物结构的致密程度,粒度和气孔率等。一般磁铁矿因结构致密,最难还原。赤铁矿有中等的气孔率,比较容易还原。褐铁矿和菱铁矿容易还原,因为这两种矿石分别失去结晶水和去掉CO2后,矿石气孔率增加。烧结矿和球团矿的气孔率高,其还原性一般比天然富矿的还要好。

五、矿石的粒度、机械强度和软化性

矿石的粒度是指矿石颗粒的直径。它直接影响着炉料的透气性和传热、传质条件。

通常,入炉矿石粒度在5~35mm之间,小于5mm的粉末是不能直接入炉的。确定矿石粒度必须兼顾高炉的气体力学和传热、传质几方面的因素。在有良好透气性和强度的前提下,尽可能降低炉料粒度。

铁矿石的机械强度是指矿石耐冲击、抗摩擦、抗挤压的能力,力求强度要高一些为好。

铁矿石的软化性包括铁矿石的软化温度和软化温度区间两个方面。软化温度是指铁矿石在一定的荷重下受热开始变形的温度;软化温度区间是指矿石开始软化到软化终了的温度范围。高炉冶炼要求铁矿石的软化温度要高,软化温度区间要窄。

六、铁矿石各项指标的稳定性

铁矿石的各项理化指标保持相对稳定,才能最大限度地发挥生产效率。在前述各项指标中,矿石品位、脉石成分与数量、有害杂质含量的稳定性尤为重要。高炉冶炼要求成分波动范围:含铁原料TFe<±0.5%~l.0%;ω(SiO2)<±0.2%~0.3%;烧结矿的碱度为±0.03~0.1。

为了确保矿石成分的稳定,加强原料的整粒和混匀是非常必要的。

纯碱期货外盘看什么

铁矿石。纯碱涨跌的逻辑是跟着铁矿石走,相似度90%。而铁矿石又跟着外盘WSI铁矿石走,所以纯碱期货外盘看铁矿石。

工业上铁矿石一般用酸溶解还是碱溶

工业上铁矿石一般用酸溶解。工业上铁矿石要用酸溶液来溶解,浓盐酸能与高锰酸钾溶液反应,稀能将+2价铁氧化成+3价铁,故选择稀硫酸最合适,并且铁矿石一般能被盐酸加热分解,含铁的硅酸盐难以溶于盐酸,可加少许氢氟酸或氟化铵使试样分解完全。

任务铁矿石分析方法的选择

任务描述

在岩石矿物分析工作中,元素及其化合物的掩蔽、分离和测定都是以它们的分析化学性质为基础的。所以,讨论和研究它们的分析化学性质是极其必要的。本任务对铁的化学性质、铁矿石的分解方法、铁的分析方法选用等进行了阐述。通过本任务的学习,知道铁的化学性质,能根据矿石的特性、分析项目的要求及干扰元素的分离等情况选择适当的分解方法,学会基于被测试样中铁含量的高低以及对分析结果准确度的要求不同而选用适当的分析方法,能正确填写样品流转单。

任务分析

一、铁在自然界的存在

铁在自然界(地壳)分布很广,也是最常用的金属,约占地壳质量的5.1%,居元素分布序列中的第四位,仅次于氧、硅和铝。它的最大用途是用于炼钢;也大量用来制造铸铁和煅铁。铁和其化合物还用作磁铁、染料(墨水、蓝晒图纸、胭脂颜料)和磨料(红铁粉)。但由于铁很容易与其他元素化合而成各种铁矿物(化合物)存在,所以地壳中很少有天然纯铁存在。我们所说的铁矿石是指在现代技术条件下能冶炼出铁来而又经济的铁矿物。

铁矿石从主要成分上划分至少可以分为:赤铁矿,主要有效成分Fe2O3;褐铁矿,主要有效成分mFe2O3·nH2O;磁铁矿,主要有效成分Fe3O4;菱(黄)铁矿,主要有效成分FeCO3(Fe2S3);纯铁矿,主要有效成分单质铁;以及上述矿藏的混生矿或与其他黑色金属的伴生矿。铁精矿中铁的含量(品位)大小直接决定着铁的产量,所以生产中特别注重铁矿石的含量。铁精矿中铁含量的大小的主要测定方法有EDTA配位滴定法、重铬酸钾容量法。铁矿石中全铁含量的测定,目前国内外主要采用重铬酸钾容量法。

二、铁的分析化学性质

(一)铁的化学性质简述

铁(Fe),原子序数26,相对原子质量55.847,铁的密度为7.9g/cm3,铁有多种同素异形体,如α铁、β铁、γ铁、σ铁等。铁是比较活泼的金属,在金属活动顺序表里排在氢的前面。常温时,铁在干燥的空气里不易与氧、硫、氯等非金属单质起反应,在高温时,则剧烈反应。铁在氧气中燃烧,生成Fe3O4,炽热的铁和水蒸气起反应也生成Fe3O4。铁易溶于稀的无机酸和浓盐酸中,生成二价铁盐,并放出氢气。在常温下遇浓硫酸或浓时,表面生成一层氧化物保护膜,使铁“钝化”,故可用铁制品盛装浓硫酸或浓。铁是一变价元素,常见价态为+2价和+3价。铁与盐酸、稀硫酸等反应时失去两个电子,成为+2价。与Cl2、Br2、及热浓硫酸反应,则被氧化成Fe3+。铁与氧气或水蒸气反应生成的Fe3O4,可以看成是FeO·Fe2O3,其中有1/3的Fe为+2价,另2/3为+3价。铁的+3价化合物较为稳定。铁的化合物主要有两大类:亚铁Fe(Ⅱ)和正铁Fe(Ⅲ)化合物,亚铁化合物有氧化亚铁(FeO)、氯化亚铁(FeCl2)、硫酸亚铁(FeSO4)、氢氧化亚铁[Fe(OH)2]等;正铁化合物有三氧化二铁(Fe2O3)、三氯化铁(FeCl3)、硫酸铁[Fe2(SO4)3]、氢氧化铁[Fe(OH)3]等。

Fe2+呈淡绿色,在碱性溶液中易被氧化成Fe3+。Fe3+的颜色随水解程度的增大而由经橙色变到棕色。纯净的Fe3+为淡紫色。Fe2+和Fe3+均易与无机或有机配位体形成稳定的配位化合物。

(二)亚铁的氧化还原性质

在碱性溶液中亚铁极易被氧化,空气中的氧就可以将其氧化为Fe3+:

4Fe(OH)2+O2+2H2O→4Fe(OH)3

与此同时,有少量的亚铁还可发生歧化作用而形成Fe3+和Fe0。亚铁盐在中性溶液中被空气中的氧氧化时,其速度远较在酸性溶液中为快,在醇溶液中其氧化速度较在水溶液中为快;在反应过程中,pH、温度及盐类等条件对反应均有影响。反应结果往往有碱式盐生成:

4Fe2++O2+2Cl-→2FeOCl+2Fe3+

在酸性溶液中的亚铁比在碱性或中性溶液中稳定得多。氢离子浓度越大,其氧化反应越不容易进行。因此,要氧化酸性溶液中的亚铁成为Fe3+,必须采用相当强的氧化剂。许多具有强氧化性的含氧酸盐,如高锰酸盐、重铬酸盐、钒酸盐、氯酸盐、高氯酸盐等,均可在酸性环境中氧化亚铁为氧化铁。其中高锰酸盐、重铬酸盐等可配成标准溶液直接滴定亚铁。

(三)三价铁的氧化还原性质

三价铁是铁的最稳定状态。在酸性溶液中,三价铁是缓和的氧化剂,一般情况下只有较强的还原剂才能将它还原。这些还原剂有硫化氢、硫代硫酸钠、亚硫酸钠、氯化亚锡、碘化钾、亚钛盐、亚汞盐、金属锌或铝以及一些有机还原剂如盐酸羟胺、抗坏血酸、硫脲等。其中硫酸亚钛、亚汞可用来直接滴定三价铁,氯化亚锡在铁的容量法中的应用亦为大家所熟知。

(四)铁的配位性质

1.铁的无机配合物

三价铁和亚铁的硫酸盐都可与硫酸盐或硫酸铵形成复盐。其中最重要的是(NH4)2SO4·FeSO4·6H2O。此复盐的亚铁的稳定性较大,在分析中可用它来配制亚铁的标准溶液。三价铁的复盐中,铁铵钒(NH4Fe(SO4)2·12H2O)也常被用来配制三价铁的标准溶液。

铁离子和亚铁离子可分别与氟离子、氯离子形成配位数不同的多种配合物。分析中常利用[FeF6]3-配离子的形成以掩蔽Fe3+,在盐酸溶液中Fe3+与Cl-形成的配离子为,可借以粗略判定溶液中Fe3+的存在。

铁离子与硫氰酸根离子形成深红色配合物。此反应可用于Fe3+的定性分析和比色法测定。

在过量磷酸根离子存在下,铁离子可形成稳定的无色配离子,在分析中可借此掩蔽Fe3+。此外,在用磷酸分解铁矿石的过程中,也利用了三价铁与磷酸根离子形成稳定配合物的反应。

2.铁的有机配合物

EDTA与三价铁的配位反应应用十分广泛。亚铁的EDTA配合物不如三价铁的EDTA配合物稳定,因此在分析中主要应用三价铁与EDTA的配位反应以掩蔽Fe3+或进行容量法测定。

邻啡罗啉与亚铁离子形成较稳定的红色配合物,反应的灵敏度很高,可用于亚铁的分光光度法测定。

其他的许多配位剂,如铜试剂、三乙醇胺、柠檬酸盐、酒石酸盐等与三价铁离子形成配合物的反应,在分离、掩蔽中都有应用。

三、铁矿石的分解方法

铁矿石的分解,通常采用酸分解和碱性熔剂熔融的方法。酸分解时,常用以下几种方法:

(1)盐酸分解:铁矿石一般能为盐酸加热分解,含铁的硅酸盐难溶于盐酸,可加少许氢氟酸或氟化铵使试样分解完全。磁铁矿溶解的速度很慢,可加几滴氯化亚锡溶液,使分解速度加快。

(2)硫酸-氢氟酸分解:试样在铂坩埚或塑料坩埚中,加1∶1 硫酸10 滴、氢氟酸4~5mL,低温加热,待冒出三氧化硫白烟后,用盐酸提取。

(3)磷酸或硫-磷混合酸分解:溶矿时需加热至水分完全蒸发并出现三氧化硫白烟后,再加热数分钟。但应注意加热时间不能过长,以防止生成焦磷酸盐。

目前采用碱性熔剂熔融分解试样较为普遍。常用的熔剂有碳酸钠、过氧化钠、氢氧化钠和氢氧化钾等在银坩埚、镍坩埚或高铝坩埚中熔融。用碳酸钠直接在铂坩埚中熔融,由于铁矿中含大量铁会损害坩埚,同时铂的存在会影响铁的测定,所以很少采用。

在实际应用中,应根据矿石的特性、分析项目的要求及干扰元素的分离等情况选择适当的分解方法。对于含有硫化物和有机物的铁矿石,应将试样预先在550~600℃温度下灼烧以除去硫及有机物,然后以盐酸分解,并加入少量,使试样分解完全。

四、铁的分析方法

(一)重铬酸钾容量法

(1)无汞重铬酸钾容量法:试样用硫酸-磷酸混酸溶解,加入盐酸在热沸状态下用氯化亚锡还原大部分三价铁。在冷溶液中以钨酸钠为指示剂,滴加三氯化钛还原剩余三价铁,并稍过量,在二氧化碳气体保护下,用重铬酸钾氧化过量三氯化钛,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定到终点。根据消耗的重铬酸钾标准溶液的体积计算试样中全铁百分含量。

(2)有汞重铬酸钾容量法:在酸性溶液中,用氯化亚锡将三价铁还原为二价铁,加入氯化汞以除去过量的氯化亚锡,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定至紫色。反应方程式:

岩石矿物分析

岩石矿物分析

岩石矿物分析

经典的重铬酸钾法测定铁时,采用氯化亚锡将溶液中的Fe3+还原为Fe2+。然后用氯化汞除去过量的氯化亚锡,汞盐会造成污染,因此中国在20世纪60年代以来发展了“不用汞盐的测铁法”。

(二)EDTA配位滴定法

铁矿石经浓盐酸溶解,低温加热直至溶解完全后冷却,加水将溶液稀释至一定浓度,再加入和氨水调节溶液pH=1.8~2,以磺基水杨酸为指示剂,用EDTA标液滴定,终点由紫红色变为亮。

本法与经典法对铁矿石中全铁量测试结果准确度、精密度是一致的,本法可以避免因为加入HgCl2溶液而造成环境污染,有害于人的身体健康的弊病,且本法操作比经典法简便,完全可以采用。

(三)邻啡罗啉比色法

以盐酸羟胺为还原剂,将三价铁还原为二价铁,在pH=2~9的范围内,二价铁与邻啡罗啉反应生成橙红色的配合物[Fe(Cl2H8N2)3]2+,借此进行比色测定。其反应如下:

4FeCl3+2NH2OH·HCl→4FeCl2+N2O+6HCl+H2O

Fe2++3Cl2H8N2→[Fe(Cl2H8N2)3]2+(橙红色)

这种反应对Fe2+很灵敏,形成的颜色至少可以保持15天不变。当溶液中有大量钙和磷时,反应酸度应大些,以防CaHPO4·2 H2O沉淀的形成。在显色溶液中铁的含量在0.1~6mg/mL时符合Beer定律,波长530 nm。

(四)原子吸收光谱法

利用铁空心阴极灯发出的铁的特征谱线的辐射,通过含铁试样所产生的原子蒸汽时,被蒸汽中铁元素的基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中铁元素的含量。铁的最灵敏吸收线波长为248.3nm,测定下限可达0.01mg/mL(Fe),最佳测定浓度范围为2~20mg/mL(Fe)。

(五)X射线荧光分析法

X射线荧光光谱分析法具有分析速度快、试样加工相对简单、偶然误差小及分析精度高的特点,已广泛应用于各种原材料的分析中,并逐步应用于铁矿石的分析中。但由于铁矿石成分非常复杂,主成分含量较高,变化范围大,使基体变化大,对X射线荧光分析造成不利影响,致使在用通常压片法进行铁矿石分析时,其准确度不如化学法高。采用玻璃熔片法对样品进行熔融稀释处理,可以有效地消除荧光分析中的基体效应,提高荧光分析的准确度。

X射线荧光分析法的优点之一是各元素的特征谱线数量少。测定铁通常选用的是Kα线,其波长为1.93Å(1Å=0.1nm)。

五、铁矿石的分析任务及其分析方法的选择

基于被测试样中铁含量的高低不同以及对分析结果准确度的要求不同,可采用的测定方法有很多。目前,岩石矿物试样中高含量铁的测定主要采用容量分析法。其中重铬酸钾容量法应用最广泛。此外,以氧化还原反应为基础的测定铁的容量法还有高锰酸钾法、铈量法、碘量法、亚汞法以及钛量法等。以配位反应为基础的容量法中较常采用的是EDTA法。试样中低含量铁的测定,常用的有磺基水杨酸分光光度法和邻菲罗啉分光光度法以及原子吸收分光光度法。X射线荧光分析法也已用于岩石矿物试样中铁的测定。

氯化亚锡还原-重铬酸钾容量法具有稳定、准确、简易、快速等许多优点,但由于使用了剧毒的氯化汞,严重污染环境,危害人体健康。为了避免使用汞盐,近年来常采用氯化亚锡、三氯化钛联合还原-重铬酸钾容量法。原子吸收法操作简单、快速,结果的精密度、准确度高,但铁的光谱线较复杂,例如,在铁线248.3 nm附近还有248.8 nm线;为克服光谱干扰,应选择最小的狭缝或光谱带。

邻菲罗啉能与某些金属离子形成有色配合物而干扰测定。但在乙酸-乙酸铵的缓冲溶液中,不大于铁浓度10倍的铜、锌、钴、铬及小于2mg/L的镍,不干扰测定,当浓度再高时,可加入过量显色剂予以消除。

技能训练

实战训练

1.实训时按每小组5~8人分成几个小组。

2.每个小组进行角色扮演,利用所学知识并上网查询相关资料,完成铁矿石委托样品从样品验收到派发样品检验单工作。

3.填写附录一中表格1和表格2。

总结初三年级化学课本中的定义、概念,物质的物理性质及化学性质!!!!!急需!!!!

物理性质是不需要通过化学反应就能表现出的性质就像颜色气味,化学性质是需要通过化学反应才能表现出的性质。追问看问题啊亲

标签: 纯碱 铁矿石
  • 文章版权属于文章作者所有,转载请注明 https://dongkepu.com/zonghezhishi/w7e7xr.html