当前位置:懂科普 >

综合知识

> 黎曼几何中平行线相交是什么意思

黎曼几何中平行线相交是什么意思

黎曼几何中平行线相交是什么意思

黎曼几何中平行线相交的意思是在同一平面内任何两条直线都有公共点(交点)。

黎曼几何是非欧几何的一种,亦称椭圆几何。

德国数学家黎曼,对空间与几何的概念作了深入的研究,于1854年发表《论作为几何学基础的假设》一文,创立了黎曼几何。

几何是研究空间结构及性质的一门学科。

它是数学中最基本的研究内容之一,与分析、代数等具有同样重要的地位,并且关系极为密切。

小编还为您整理了以下内容,可能对您也有帮助:

黎曼几何中平行线相交的意思是在同一平面内任何两条直线都有公共点(交点)。

黎曼几何是非欧几何的一种,亦称椭圆几何。

德国数学家黎曼,对空间与几何的概念作了深入的研究,于1854年发表《论作为几何学基础的假设》一文,创立了黎曼几何。

几何是研究空间结构及性质的一门学科。

它是数学中最基本的研究内容之一,与分析、代数等具有同样重要的地位,并且关系极为密切。

非欧几何中平行线相交是怎么回事?

过直线外的一点,一条平行线也得不出来。

黎曼几何是非欧几何的一种,非欧几何中平行线也可以相交。平常所学的几何都是欧式几何,都是以欧几里得提出的五条共设为前提的。而第五共设无法拿出事实去证明。所以有了非欧几何。

黎曼几何中的一条基本规定是:在同一平面内任何两条直线都有公共点(交点)。在黎曼几何学中不承认平行线的存在,它的另一条公设讲:直线可以无限延长,但总的长度是有限的。黎曼几何的模型是一个经过适当“改进”的球面。

欧氏几何、罗氏几何、黎曼几何是三种各有区别的几何。这三中几何各自所有的命题都构成了一个严密的公理体系,各公理之间满足和谐性、完备性和性。因此这三种几何都是正确的。

扩展资料

欧式几何与非欧几何的适用范围

欧氏几何主要研究平面结构的几何及立体几何,非欧几何是在一个不规则曲面上进行研究。欧式几何可以用于研究平面上的几何,即平面几何。

研究三维空间的欧几里得几何,通常叫做立体几何。非欧几何适用于抽象空间的研究,即更一般的空间形式,使几何的发展进入了一个以抽象为特征的崭新阶段。非欧几何学还应用在爱因斯坦发展的广义相对论。

在黎曼几何里平行线可以相交吗?

黎曼几何中没有平行线。换而言之、在黎曼几何中平行线可以相交。

平行,相交和垂直是什么意思?

在平面上两条直线、空间的两个平面以及空间的一条直线与一平面之间没有任何公共点时,称它们平行。

在数学中,相交是两个几何图形之间关系的一种。两个图形相交是指它们有公共的部分,或者说同时属于两者的点的集合不是空集。若两个几何图形在某个地方有且只有有一个交点,则可以称为相切而不是相交。

垂直,是指一条线与另一条线成直角,这两条直线互相垂直。通常用符号“⊥”表示。

扩展资料

在欧几里得平面上,两条直线要么平行,要么相交,要么重合。这时欧几里得第五公设的推论。相交的两条直线恰好有一个交点。

在非欧几何中,按几何特性(曲率),可以分为两类。罗巴切夫斯基几何中两条直线要么平行,要么相交,但平行线不止一条。黎曼几何中两条直线总是相交。

三维空间或更高维空间中,两条直线相交则必定共面。

两个圆相交当且仅当两个圆心之间的距离严格小于两圆的半径之和,并严格大于两圆的半径之差。

参考资料来源:百度百科-相交 (数学用语)

参考资料来源:百度百科-垂直 (数学术语)

参考资料来源:百度百科-平行 (科学术语和概念)

我杀了欧拉 灭了黎曼 只为让平行线相交什么意思

黎曼几何是非欧几何的一种,非欧几何中平行线也可以相交。我们平常所学的几何都是欧式几何,都是以欧几里得提出的五条共设为前提的。而第五共设无法拿出事实去证明。所以有了非欧几何。

第五公设的等价命题是这样的:过直线外一点,有且仅有一条直线与已知直线平行。

非欧几何就是在第五公设不成立的情况下建立的几何学说吧。个人理解,勿喷。

有科学家提出平行线是可以相交的,应该怎么理解?

1854年,德国数学家黎曼创立了他的一个非欧几何学——黎曼几何,他的第五公设换成任何两直线都是相交的,即没有平行线一说。其几何模型之一就是球面,直线就是大圆。

为什么相交线段平行(黎曼几何)

两平行线相交于无穷点

以下为引用:

“平行线公理”之争的终结——黎曼几何

让我们先来个逻辑推理:对于“过直线外一点可做其几条平行线”?欧氏几何说,只能做一条;罗氏几何说,至少可以做两条(包括一组和无数)。那么还剩什么情况没涉及到呢?

很显然,就是一条都不能做!

而有人沿着这个思路想下去,还真的又创立了一种“非欧几何”。这个人叫“黎曼”,是德国数学家,所以这种几何又被称为“黎曼几何”。1854年黎曼所作的《论几何学作为基础的假设》一文,是“黎曼非欧几何”诞生的标志。

那么黎曼何以认为“过直线外一点一条该直线的平行线也做不出来”呢?

这需要我们再回到球面。我在讲罗氏几何时,就不得不提前告诉大家,圆球上的“直线”是过球心的圆上的“大圆弧”,且这些“直线圆”都是相交的,并建议大家用两根“赤道圆绳”在地球仪上比划,以获得鲜明、生动的“感性认识”。(请参见41页2027复“罗氏几何可能在什么“面”上实现?”)其实这一思想是黎曼的。

这里需要注意的是:我们大家所熟悉的地球仪上的“纬线圈”可不是“球面直线”!亦即“纬线圈”及其“圆弧”不是“短程线”(或说“测地线”)。这是为什么呢?大家可以就着地球仪观察一下,凡是“直线圆及其圆弧”,过其上任一点所做的圆球的切面,与这个直线圆或其圆弧都是“垂直”关系!这是球面“直线”和“直线圆”的突出特点。但纬线圈及其圆弧就无此特点了,你可以任意选一纬线(赤道除外),然后在其上任选一点,过该点做圆球的切面(用本书罩在这点上,使地球仪靠在这书上,就像地球仪静放在桌面上的书上的状态一样即可。这里只不过移到了空中)。这时你就可明显地发现,纬线圈与其有关“球切面(书)”是一种“斜交”关系,而非“垂直”关系。当然,“一段纬线”,即“纬线圆弧”,与其各点“球切面”的关系,亦是“斜交”,而非垂直关系。因此纬线圈及其圆弧不是球面上的“直线”。——由此,旅行时,大家应选择走“球面直线圆弧”(大圆弧),而不是“沿着纬线走”,这样你才能真正走“捷径”!沿着纬线走其实是“绕远”、走了弯路了。但“赤道”既是纬线又是球面直线圆,所以在赤道沿着赤道走是最短途径,是走的“直线”。

下面回到正题:正是由于球上“大圆弧”延长后都是有限、封闭的(都成“圆”),且任何两个“球面直线圆”都相交,因此黎曼认为球面(如我们的“地球”,曾被看成“平面”)上其实无平行线可言,当然也就更谈不到“过直线外一点作其一条或几条平行线”了。这样关于欧氏几何的“第五公设”,到了黎曼这里,就变成“过直线外一点一条平行线都做不出来”了(这其实也是欧氏第五公设的一个“反命题”)!

而“圆球”是“椭圆球”的特例,我们的地球实际就是个不规则的“椭球体”。关于圆球和各种椭球的关系如下:

椭球是一种二次曲面,是椭圆在三维空间的推广。椭球在xyz-笛卡儿坐标系中的方程是:

其中a和b是赤道半径(沿着x和y轴),c是极半径(沿着z轴)。这三个数都是固定的正实数,决定了椭球的形状。

如果三个半径都是相等的,那么就是一个球;如果有两个半径是相等的,则是一个类球面。

球;

扁球面(类似块状);

长球面(类似条状);

不等边椭球(“三条边都不相等”)。

点(a,0,0)、(0,b,0)和(0,0,c)都在曲面上。从原点到这三个点的线段,称为椭球的半主轴。它们与椭圆的半长轴和半短轴相对应。(摘自“维基百科”,请参见下图)

因此,黎曼由圆球得出的结论,可以推广到“椭球”:过椭球心的“椭圆及其圆弧”乃椭球上的“短程线”或说“测地线”,亦即“椭球直线”。同样这些“直线椭圆”也是相交关系,因此在椭球面上像在圆球面上一样,也不存在平行线。

黎曼“无平行线”的新几何提出后,大家一看,他说得有道理啊,“言之成理,持之有故”,可以很好地“自圆其说”,且比罗氏几何好理解多了,直观多了,于是很快便接受了“黎曼几何”。而由于黎曼几何适用于“椭球面”,所以黎曼几何又被称为“椭圆几何”。

高等数学——平行线会相交是怎么回事哦?

在欧几里得几何体系中,两条平行线间的距离处处相等。

在希尔伯特几何体系中,两条平行线在无穷远处相交于一点。

这是微观与宏观的矛盾的统一性。

“平行线可以相交”的理论对人类有何意义?

“平行线可以相交”这件事在我们现在看来,很多人都无法理解,这是因为我们知识的局限性造成的。

我们初中所学习到的平面几何学以欧几里得几何学为框架,其中对平行线的定义就是在二维平面内两条不相交的直线。

而关于直线的定义是,在二维平面上的两个点之间有且只有一条直线,也就是我们常说的两点确定一条直线。

这么看来在欧式几何学中,平行线可以无限延长,且永远不会相交。这种说法很符合人类的直觉常识,也很容易被人们接受,且深信不疑。

不仅是我们,几千年来大部分的数学家也是这样认为的。因此欧式几何学也顺势统治了人类数学史数千年的时间

那么平行线为何又可以相交呢?这是怎么回事?这个问题涉及到了几何学的一个重大发现和突破,也不得不提一位俄罗斯数学界的牛人:罗巴切夫斯基。

1826年2月23日,34岁的罗巴切夫斯基在自己任教的喀山大学举办的一次学术讨论会上宣读了自己的一篇论文。

参加此次学术会议的都是当时数学家的大咖,其中不乏一些已经在学术界很有成就,资历比较老的前辈。

在他们眼里罗巴切夫斯基是一位在学术上非常严谨、诚实、富有才华的青年数学家,未来可期。他们也很期待罗巴切夫斯基的学术报告。

负曲率二维表面三角形内角和小于180°,且可以作已知直线的无数条平行线

在做了简短的开场白以后,接下来罗巴切夫斯基所说的话,令当时在场的所有数学家惊愕不已,罗巴切夫斯基所做的报告不仅完全超出了当时数学界的认知,且每一句话都在挑战着人们的常识。

例如罗巴切夫斯基提出:在一个二维的面上三角形的内角之和可以小于180°,当然也可以大于180°;由两条直线组成的锐角,向一边作垂线,这个垂线可以和另外一条边不相交;

正曲率表面,三角形内角和大于180°,无法作平行线

在一个二维面内,过直线外的一点,可以做多条直线与已知直线平行;当然也存在无法做平行线的情况,也就是说在一个二维面上,没有真正的平行线,任何两条直线都有一个共同的交点(平行线相交)。

看了以上的说法是不是很懵,不要慌张,当时在座的所有数学家都被惊掉了下巴,无人能理解罗巴切夫斯基在说什么。

但罗巴切夫斯基说这些看起来奇怪的说法是新的几何学,虽然和欧式几何相互冲突,但是它和欧式几何有着同等重要的地位,并请求同行对他的报告提出评议。

但此时的会场一片寂静,所有的人都流露出了怀疑、否定的态度,不敢相信这么胡扯的话能出在一位治学严谨的数学家之口。

那么罗巴切夫斯基到底说的是什么?它又发现了什么?

上文中我们不断的提到欧式几何,它是公元3世纪由古希腊学者欧几里得编写的一部数学界的旷世巨著《几何原本》。

欧几里得的几何学中,一开始写了5条公设(公理),并在此基础上进行逻辑推理导出了48个命题。公设的意思是那些不用去证明的真理。

这五条公理我们非常熟悉,这是学习几何时必须掌握的知识,其中前四条公理人们看着十分满意,但是唯独第五条(论平行线的)人们怎么看怎么不舒服。

并不是觉得它不对,就是感觉这个语句如此之长一点也不简洁,看起来更像是一条可以被证明的定理,而不是公理。

并且后来的学家也认为,是当时欧几里得无法给出这条定理的证明,投机取巧才把它写进了公理。如此想法一出,数学界就开始了长达数千年利用前四条公理去证明第5公理的道路。

在一个球面,两点之间可以作无数条直线。

但是直到19世纪初,所有的数学家都逃不过循环论证的噩梦,证明第5条公理就成为了数学家的一大历史遗留问题。

身为数学家的罗巴切夫斯基当然也加入了其中,不过他一样也发现第五条公理怎样都无法证明。但是理论的进步往往都自于一瞬间的灵光乍现。

既然无法证明,那是不是就说明证明的第五条公理的过程根本就不存在,我们去找一件本身不存的事情当然是徒劳。人类花了几千年,就算是再过上万年也会无果。

为了证明第五公理不可证明,罗巴切夫斯基首先否定了第五公理,把他更改为一条新的公理,即:过直线外的一点可以做已知直线,至少两条平行线。

将这个新的公理和前四条公理结合在一起,罗巴切夫斯基从头开始了新的逻辑推理,并发现得出来的结论虽然古怪,但是在理论上并不矛盾,而且与前四条公理完美的相容。

这只能说明,新结论和欧式几何同样具有同等的地位,且是一个完整、逻辑严密的新几何。新几何的存在也说明了第五公理并不是公理,也不是定理,它只能是一个对平行线的定义,不同的定义可以导出不同的结论,因此也无法证明。

这个新的几何学就是我们大学时学到的非欧几何,适用于弯曲的时空。罗巴切夫斯基根据他对平面内平行线的定义所得出来的几何学也被称为罗氏几何。

主要描述的是负曲率空间的几何学,虽然这是一个伟大的发现,但是由于当时人们根本找不到现实世界的类比物来理解罗氏几何。

因此罗巴切夫斯基的新发现得到的是一片冷嘲热讽,甚至是人身攻击,甚至是被当时的教育部开除了公职,迫使他离开了最喜爱的大学校园。

长年的苦闷和压抑使得罗巴切夫斯基在晚年百病缠身,甚至失明。1856年罗巴切夫斯基带着遗憾和无奈走完了自己的一生。这时他的新几何学依然没有被人们认可,在追悼会上人们对他在非欧几何上的贡献也是只字不提,刻意回避。

1854年黎曼更改了第五条公理,即:在一个二维平面内,不存在平行线的存在,得出了黎曼几何。黎曼几何描述的是正曲率空间的几何学,也被称为椭球几何学。

1864闵可夫斯基提出了不同以往的绝对平坦时空,称为闵式四维时空,1868年数学家贝特拉米证明的非欧几何可以在闵式四维时空的曲面上实现。

到了二十世纪初,爱因斯坦在闵式四维时空以及非欧几何的基础上提出了相对论,为人们重新塑造了整个宇宙的时空结构。

平坦的时空只不过是宇宙中小尺度上的特例,而在大尺度上不存在所谓的平坦时空,因此非欧几何才是宇宙的本质。

宇宙曲率

整个宇宙存在一定的曲率,虽然我们观察到的宇宙近似于平坦,这只能说明我们观察的尺度较小,从整个宇宙的尺度上来说,是不存在绝对的平行线,无限延长的两条线会因为宇宙的曲率相交或者发散。

因此欧式几何就像是牛顿力学,非欧几何更像是相对论。人们当时难以接受非欧几何不亚于难以接受相对论的程度。

黎曼几何为什么平行线

你想问的是为什么黎曼几何中平行线可以相交吧。简单的举个例子,地球的两条平行的经线会有两个交点,也就是北极点和南极点。黎曼几何是建立在黎曼空间上的,是比我们日常所处的欧式空间更复杂的曲面空间,事实上,曲面空间才是真实的宇宙。

两条平行线 在什么情况下可以相交?

在什么情况下都不可以相交。

几何中,在同一平面内,永不相交(也永不重合)的两条直线(line)叫做平行线(parallel lines)。

平行线公理是几何中的重要概念。欧氏几何的平行公理,可以等价的陈述为“过直线外一点有唯一的一条直线和已知直线平行”。

而其否定形式“过直线外一点没有和已知直线平行的直线”或“过直线外一点至少有两条直线和已知直线平行”,则可以作为欧氏几何平行公理的替代,而演绎出于欧氏几何的非欧几何。

扩展资料:

平行公理

平行公理:经过直线外一点,有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。平行公理的推论体现了平行线的传递性,它可以作为以后推理的依据。

在欧几里得的几何原本中,第五公设(又称为平行公理)是关于平行线的性质。它的陈述是:

“在平面内,如果两条直线被第三条直线所截,一侧的同旁内角之和大于两个直角,那么最初的两条直线相交于这对同旁内角的另一侧。”

这条公理的陈述过于冗长。在1795年,苏格兰数学家Playfair提出了以下以下公理作为平行公理的代替,在被人们广泛的使用。

参考资料来源:百度百科-平行线

  • 文章版权属于文章作者所有,转载请注明 https://dongkepu.com/zonghezhishi/dl57oy.html